The History of the Phillips Curve: An American Perspective

Robert J. Gordon Northwestern University, NBER, and CEPR Keynote Address, ESAM 2008 Markets and Models in the AWH Phillips Tradition Wellington NZ, July 9, 2008

What this Paper Covers and What it Doesn't

Take the subtitle seriously

- From "An American Perspective"
- After Phillips, the conceptual literature has been dominated by Americans
- Econometric analysis of the success and failure of the PC has been disproportionately on American data
- Hereafter "Phillips Curve" is abbreviated "PC"
- No attempt here to survey the vast PC literature on other countries
 - Except to raise the big question: which models apply to which types of inflationary episodes?

My Gratitude to ESAM Organizers

- They suggested topic "History of the Phillips Curve"
- Otherwise, I might have written a much narrower paper reporting empirical results and debating empirical methods
- Today's paper is broader, more provocative, more interesting. Thank you, organizers!
 - This talk contains a lot that some people may find controversial, and so I look forward to the discussion period at the end

There is a 50-page Paper on which this presentation is based, Available on the web

- It has been uploaded to the conference web site.
- Also to my personal web site, just google "Robert J. Gordon"
- While visiting my web site, don't miss the 280 photos of economists, including 20 Nobel winners, from 1967 to 2008.
- For that alone, you can just google "Photos of Economists"

For Instance, Tom Sargent in 1978

And Sir Clive Granger

This Paper: Partly What You Would Expect, Partly Not

- What You'd Expect
 - Consensus interpretation of
 - Phillips 1958 (fun to reread)
 - Don't forget Irving Fisher (1926)
 - Samuelson-Solow 1960
 - Demise of large-scale econometric models in 1960s
 Battle between U Chicago vs. MIT in 1960s
 - Friedman-Phelps natural rate hypothesis
 - Lucas and rational expectations
 - Lucas and Sargent (1978). Positive correlation of inflation and unemployment in 1970s left "Keynesian economics lying in wreckage"
- Not much controversy here, except for interpreting the great irony: F-P-L won the neutrality battle even as their models of information barriers were rejected.

Big Surprise! Fork in the Road after 1975

- Nobody has previously written about the fork in the road
- Two different schools of thought emerged after 1975 to rescue the PC from the Lucas-Sargent "wreckage"
- Post-1975 "Left Fork": New model combining dynamic AD and AS shocks with long-run neutrality and pervasive inertia.
 - Based on new theory of policy responses to supply shocks
 - Incorporates supply shock variables explicitly into PC equation, identifies sources of negative and positive correlation between inflation and output or unemployment gap. Makes macroeconomics symmetric with microeconomics
- Post-1975 "Right Fork": Main features are that expectations can jump in response to policy, game between policymakers and private expectations, NKPC incorporates forward-looking expectations
 - But no inclusion of supply shocks, no explanation for PC shift from negative to positive correlation and back to negative again. Dodges issue of pervasive inertia and persistence
- Unique contribution of this paper to pay attention to both Left Fork and Right Fork and appreciate their value. They are valid, but apply to different types of inflation

The Phillips Curve is Born: The Role of Unanswered Puzzles

- Phillips Curve widely accepted because it provided an answer to a macro puzzle
- US inflation doctrine in chaos in late 1950s
 - Keynesian supply curve, reverse "L"
 - Demand pull, cost push, demand shift?
 - Couldn' t understand why inflation was positive in 1955-58 when (quote from S-S)
 - "growing overcapacity, slack labor markets, slow real growth, no apparent buoyancy in overall demand"
- Phillips (1958) esp as interpreted by S-S (1960) was an epochal clarifying beacon

Other Classic Examples of How Events Foster Acceptance of Ideas

- Puzzle of Great Depression created Keynesian doctrine
- Puzzle of accelerating 1960s inflation created acceptance of Friedman-Phelps natural rate hypothesis
- Puzzle of positive inflation-unemployment correlation created acceptance of post-1975 dynamic aggregate demand-supply model
 - In micro, P and Q can be positively or negatively correlated
 - Why not also in macro? A blockbuster insight that most of the PC literature in the past decade has ignored

What the Phillips Article Actually Said

- Solid nonlinear negative correlation wage change and unemployment, 1861-1913
- Two additional variables mattered
 - Rate of change of unemployment, created counterclockwise loops (Lipsey documented this)
 - No role of prices in general, just import prices
 - He viewed price level as a weighted average of labor costs (80%) and import prices (20%)
 - Preview of supply shocks (which include import prices)

Phillips fit the 1861-1913 Relationship

$$w_t = -0.90 + 9.64 U_t^{-1.39}$$

•

- Then he compares two subsequent periods with that fitted equation
 - 1913-48 points lie on the same line except for big negative outliers 1921-22 which he attributes to "negative retail price changes"
 - 1948-57 also lies on the line except big positive outliers 1951-52, lagged effects of sterling devalutaion in 1949 and following import price increases

(1)

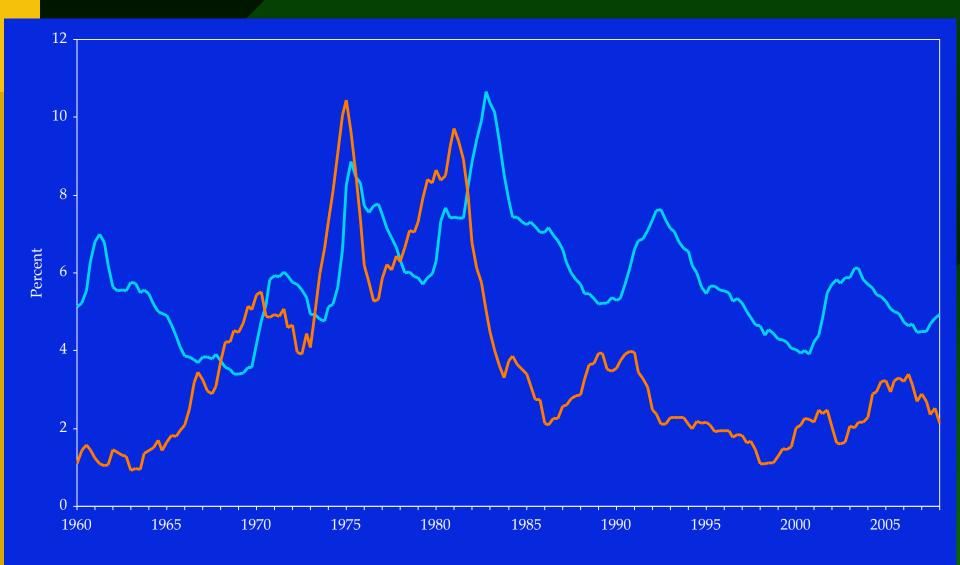
- Zero inflation requires 2.5 percent unemployment
- No policy implications, no conjectures on what might make the curve shift

Samuelson-Solow (1960)

- Christened the term "Phillips Curve"
 - Entered the language of macro economics almost immediately
- Examined the data (no regressions)
 - PC doesn't work Great Depression or wars
- Zero inflation unemployment rate?
 - Prewar years 3 percent (excluding Great Depression)
 - Postwar "5 to 6 percent" and they wonder why

Why the Postwar Upward Shift?

- Samuelson-Solow Conjectures
 - US trade unions "less responsible" than UK
 - Expectation of permanent full employment
 - Smallness of UK makes their labor markets more flexible than US
- They explicitly state that policymakers can choose points along the PC
- They conjecture PC shifts in long-run but say they could be either up or down
 - High U could either reduce expectations or raise structural unemployment


Did Irving Fisher Discover the Phillips Curve First?

- 1926 obscure journal, I arranged to have reprinted in JPE in 1973
- Inflation causes changes in *level* of U
 Why? Costs are sticky "by contract or custom"
- Monthly data 1915-25; he gets correlation of 0.90 of U on 5 month distributed lag of inflation
- Doesn't notice data for 1903-15 in his own plot; U variance similar but inflation variance much lower

The Policy-Exploitable Tradeoff: 1960-67

- Heller, Tobin, Solow convinced Kennedy and Johnson to "get the country moving again" by choosing a point on the PC to the northwest
- 1964-65 tax cuts occurred *after* U had fallen below 5.5 percent (S-S & current)
- Floodgates of Vietnam spending in 1965-66
- Our first look at Figure 1

Inflation and Unemployment Rates, 1960:Q1 – 2007:Q4

Second Aspect of pre-NRH Period, 1960-67

- Computer power made possible large-scale econometric models (Brookings, MPS, DRI)
- Wage change was a PC depending on U, sometimes ΔU, inflation lags, maybe payroll taxes. Sum of inflation lag coefficients < 1.0
- Price level depended on wage level adjusted for trend productivity (SULC) and a measure of the level of demand

Rivalry between Chicago and MIT Econ Departments

- "Battle of the Radio Stations" (AER 1965)
 - Did "only monetary" or "only fiscal" policy matter?
 - Bizarre to us graduate students IS-LM model shows both should matter except in extreme cases
- Rivalry between MF and FM came to climax with MF's Presidential Address and the implosion of Modigliani's cherished MPS model
- Important difference: Chicago economists visited Latin America. How could there be a long-run tradeoff or indeed any tradeoff at all except over the shortest run

Logical Problems with PC Tradeoff

- Why did the nominal wage adjust so slowly, especially downward?
- Why did the PC lie so far to the right?
- How could PC be stable over history, given history of hyperinflations and Latin American-style macro volatility

Friedman-Phelps NRH

- Exists a natural rate of U, call it U^N
- Any attempt by policymakers to select U ≠ U^N would cause expected inflation to differ from actual inflation, which in turn would shift PC up or down.
- Impeccable timing, since inflation was then soaring above the prediction of the large-scale econometric models. Score: MF=1, FM=0
- A great idea supported by an implausible theory. MF firms knew P but workers did not, they were "fooled". For Phelps both were fooled.
 - Yet CPI available costlessly within one month
 - How could multi-year business cycles be motivated when the theory said that they should last no more than one month?!

Lucas and Rational Expectations

- Workers would not make the same mistakes repeatedly
- Distinction firms vs. workers dropped. Now all agents were "yeoman farmers", observing their own prices but not aware of the economywide price.
- Same problem of costlessly available information
- Valuable insight:
 - Farmer's supply response depends on known past variance of shocks
 - No supply response if past own-price movements have been perfectly correlated with macro price movements (no change in relative prices)
 - Implies slope of PC varies depending on history of macro volatility

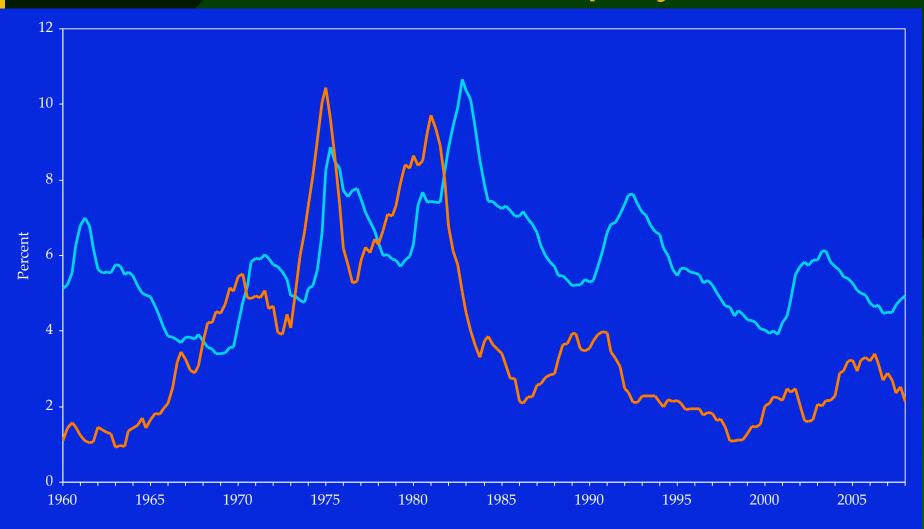
Policy Ineffectiveness Proposition

- Output does not respond to anticipated changes in money, only monetary "surprises"
- Failed empirically because of two assumptions inherited from Friedman-Phelps
 - Market-clearing and imperfect information
- "Emperor(s) Had no Clothes"
 - Sims (2008): "Models of the Lucas supply curve were highly abstract and unrealistic."

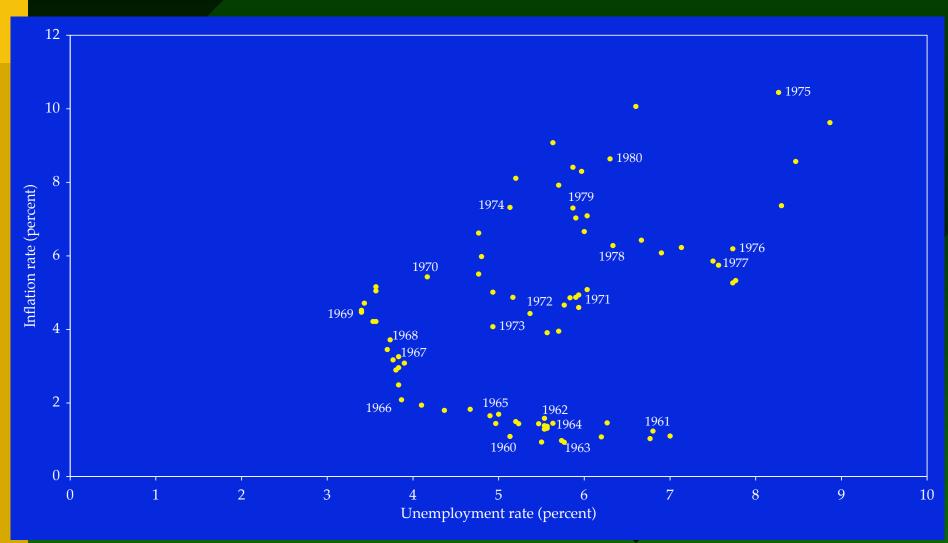
Empirical Destruction of Policy Tradeoff

- As if forecasting errors in late 1960s and Friedman's victory were not enough
- Policy tradeoff rests on a particular coefficient, α<1, but by early 1970s estimated α=1

(3)


• $p_t = \alpha p_{t-1} + \beta U_t + e_t$ (2)

• $p_t = \beta U_t / (1 - \alpha)$


Sargent's (1971) Logical Rebuttal

- $p_t = \alpha E p_t + \beta U_t + e_t$ (4)
- $E\rho_t = v \rho_{t-1}$ (5)
- $p_t = \alpha v p_{t-1} + \beta U_t + e_t$ (6)
- Sargent: (6) cannot estimate both α and v
- No reason for v=1. This would only occur with extremely strong serial correlation that didn't occur in most of US history
- Attempts to defend the policy tradeoff promptly ceased, so devastating was Sargent's logic

1970s: Positive Correlation & Inflation Leads Unemployment!

Scatter Plot Just through 1980 (U vs. 4-qtr PCE Inflation)

The Negative PC was Dead and Buried

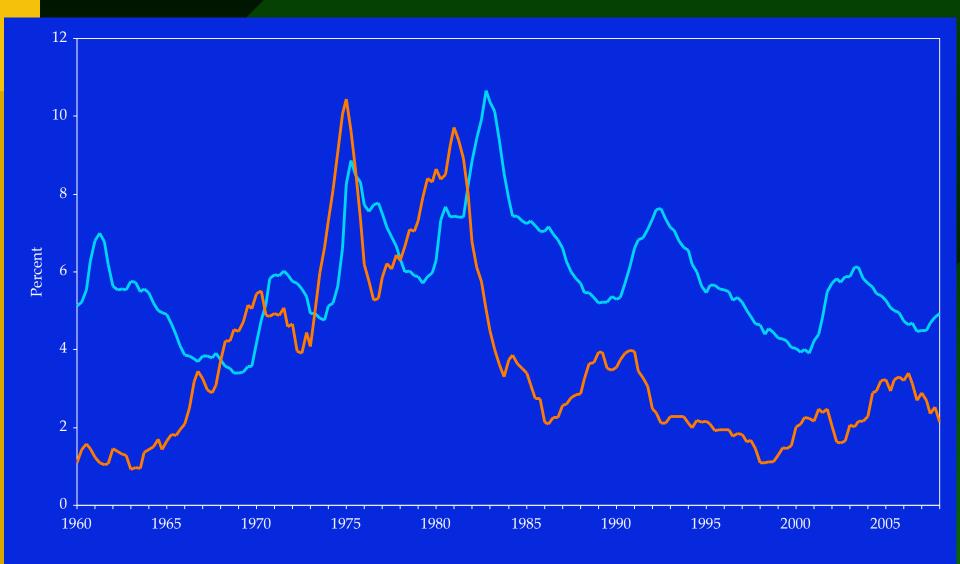
- Lucas-Sargent (1978): "The task which faces contemporary students of the business cycle [is] that of sorting through the wreckage . . . Of that remarkable intellectual event called the Keynesian Revolution"
- Irony #1: It was Friedman-Phelps-Lucas "New Classical Macro Mark I" (NCM #1) which lay in wreckage as a theory of the business cycle
- Irony #2: Starting in 1975 the PC was resurrected by incorporating a novel idea from microeconomics: both supply and demand matter

Parts 3 and 4 of Paper: The 1975 Fork in the Road

- Left fork: supply joins demand in the dynamic aggregate supply/demand model, incorporating long-run neutrality and inertia
 - The *theory* of New Keynesian economics provided numerous models to motivate the role of inertia and stickiness
 - Once inflation depends on inertia, and does not mirror observed changes in nominal GDP growth, then real GDP is no longer an object of choice but becomes a residual. Thus the left fork revived Keynesian, non-market clearing macro

The Right Fork of the Road

- Sargent, Kydland, Prescott, Gali, Gertler
- All models have in common
 - Lack of inertia and persistence
 - No explicit incorporation of supply shocks
 - Expectations can jump spontaneously in response to actual and anticipated changes in policy
- The Right Fork is essential to understanding the ends of hyperinflations (Sargent, 1982) and other cases of high macro volatility (Argentina)


Part 3 of Paper: The Left Fork in the Road

- Demise of NCM #1, a different form of "wreckage"
- Could not explain multi-year business cycles with onemonth information lags
- Inability to develop a symmetric explanation of price and output behavior
- Barro (1977) could not demonstrate the required corollary to the Lucas supply function: the full and prompt responsiveness of inflation to anticipated changes in nominal GDP

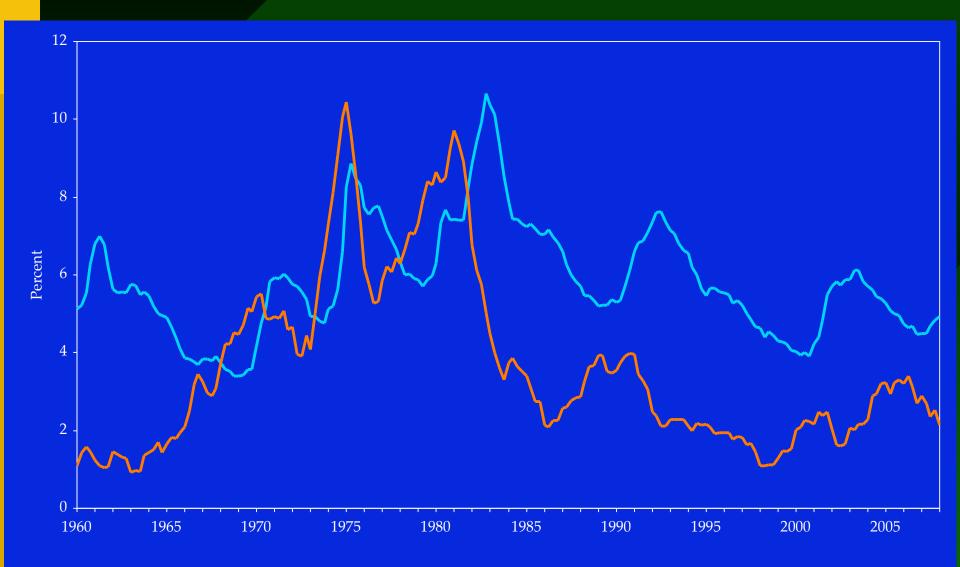
First Element in Resurrection: Theory of Policy Responses to Supply Shocks

- Gordon (1975, 1984), Phelps (1978)
- Price elasticity of demand for oil <1, thus its expenditure share must increase
- Expenditure share of non-oil must decrease
- How can this happen? Need wedge between nominal GDP and nominal wage growth
 - Solutions: negative wage growth, positive nominal GDP growth (with accelerating inflation), or partial nominal GDP response which causes a recession
- New York Times (1976): "A New Theory: Inflation Creates Recession". Lo and Behold, look back at Figure 1

Notice how Inflation Leads Unemployment, 1973-83

Revival of the PC Took Place on Three Fronts

- Theory of Supply Shocks integrated into a Dynamic AS-AD Model
 - Micro S & D shocks allow any correlation between P & Q. Now same was true for inflation and output (first-order difference equations link inflation *rate* with U *level*)
 - Twin peaks of inflation and U, and lead of inflation ahead of U, explained by model. No more puzzles, no more "wreckage"
- Development of econometric "mainstream" model, 1977-80, part 5 of this paper
- A new generation of macro textbooks, both published in 1978
 Rudi Dornbusch's 1975 classroom handout
- New abbreviation "NAIRU" replaces "natural rate of unemployment" even though it is not symmetric


Conceptual Differences between Left and Right Forks

- Mainstream model features long lags on inflation which are *not* interpreted as representing long lags in forming expectations
 - Instead, influence of explicit and implicit wage and price contracts
 - Also important, micro information barriers to knowledge of which suppliers will change prices by how much, and when
 - "Input-output approach"
- Demand represented by U gap or output gap
- Supply represented by explicit supply shock variables (z) defined so that when z=0 there is no upward or downward pressure on inflation rate
 - Changes in relative price of food and energy, changes in relative price of imports, and changes in trend productivity growth
- Three-cornered approach demand, supply, inertia, christened the "triangle model"

Mainstream Model: Empirical Success and Failure

- Model specified in its present form in 1980, published in 1982
- First test, the Volcker disinflation
 - The actual sacrifice ratio turned out to be much less than many had forecast
 - In a VAR model, endogenizing of oil and import prices made them a channel by which monetary and fiscal policy conquered inflation so rapidly

Narrative of Inflation Behavior after 1986: Role of AS and AD

The Model Needed One Major Fix

- Unlike much econometric work that relies entirely on goodness of fit and significance of coefficients, the triangle model was always tested by post-sample dynamic simulations
 - Important in any model with a strong influence of the lagged dependent variable
- Forecasts in dynamic simulations began to drift away from actual inflation in 1994-95.
 Predicted too much inflation

Solution? Allow the NAIRU to Vary over Time

- Stock-Watson (1997) contributed method, using my triangle model
- I refined triangle model (1997), using their method
- The TV-NAIRU drifted down during the 1990s, helping to explain why low unemployment in 1997-2001 did not cause an inflation acceleration as in 1964-70 or 1987-90
- Partial explanation of the declining TV-NAIRU by Katz and Krueger (1999)

Part 4: The Right Fork

- All Right Fork models share in common ability of expectations to jump without regard to inertia
- Kydland and Prescott
 - Faster inflation under discretion than under policy rules that prevent attempts to exploit policy tradeoff
 - Credibility of monetary policy gained by sticking to rules
- This line of research ignores
 - Policy dilemma when facing adverse supply shocks
 - Information available to policymaker: oil prices, food prices, exchange rates

New-Keynesian Phillips Curve (NKPC)

- Possible Confusion between New Keynesian Economics and NKPC
- NKE starting with Fischer (1977) and Taylor (1980) developed theories to explain price and wage stickiness
- When prices and/or wages are sticky, expectations are inherently *backward looking* because agents forming expectations are aware of the influence of the past
- Thus NKPC with its emphasis on forward looking expectations is incompatible with the NKE types of theoretical models

Differences between NKPC and Triangle Model

$$p_t = \alpha Et \, p_{t+1} + \beta (U_t - U_t^*) + e_t \tag{8}$$

- No explicit treatment of supply shocks; these are suppressed into the error term
- Expectations are explicitly forward looking, ignoring role of inertia in anchoring expectations
- This version supplements expected future inflation with the unemployment gap (Mankiw exposition). Other NKPC expositions use output gap or change in marg cost (MC), the real wage divided by productivity
- Problem: MC is endogenous and requires three separate equations, one each for inflation, wage change, and productivity change. Some NKPC expositions treat ΔMC as exogenous

The Challenge of Persistence

- Since private agents know that inflation is persistent and depends on its own lagged values, how could central bank alter expectations *directly* by mere pronouncements?
- Expectations only adjust *indirectly* with evidence that higher U has succeeded in pushing inflation down
- Fuhrer (1997) argues that data cannot distinguish between forward and backward looking expectations
- This led to "hybrid" (both backward and forward) NKPC variants, but forward-looking expectations are always proxied by lags with various restrictions
- If there are enough backward-looking agents, as in the input-output paradigm, how can the forward-looking agents ignore the resulting persistence?

Constraints on the Formation of Expectations

- Recent Literature has ignored *micro uncertainty* and has turned to credible explanations of imperfect *macro* information
- #1 Lags to learn about structure of economy (yes, we learn about TV-NAIRU only after the fact)
- #2 Impfct Info about Goals of Central Bank (yes, Fed's Taylor Rule coefficients changed sharply after 1990)
- #3 Costs of frequent adjustments in expectations, "rational inattention" Good idea, more appropriate for micro expectations in the context of the input-output approach

Which Fork Applies to Which Episodes?

- Right Fork: hyperinflations, Argentina, other unstable economies (Zimbabwe)
- Convergence of inflation rates within Europe 1975-95 can only be explained by policy-based expectations. Italian agents learned to watch the Bundesbank as much as the Banca d' Italia

The Left Fork Does a Much Better Job for Postwar US

- But what about pre-1954 US? My 1982 JPE paper created quarterly data going back to 1890
- American PC relationship doesn't work in 1930s or two World Wars
- Faster price adjustment to nominal GDP changes when outside information of something special – World War I
- Dummy variables: two World Wars, NRA, Korea, Nixon controls
- Gradual upward shift in coefficient on lagged inflation (Sargent, 1971) from 0.4 pre-1929, to 0.6 1929-53, to 1.0 post-1953

Part 5: NKPC vs. Triangle, Specification and Results

Recall NKPC

 $p_{t} = \alpha Et \, p_{t+1} + \beta (U_{t} - U_{t}^{*}) + e_{t}$ (8)

Instrument future expectations; first stage of 2SLS is

$$E_t p_{t+1} = \Sigma \lambda_i p_{t-1} + \varphi(U_t - U_t^*)$$
(9)

• Substitute (9) into (8)

 $p_t = \alpha \sum \lambda_i p_{t-1} + (\alpha \varphi + \beta) (U_t - U_t^*) + e_t$ (10)

• Roberts version of NKPC assumes fixed NAIRU & $\alpha = 1$ $p_t = \Sigma \lambda_i p_{t-1} + \gamma + \beta U_t + e_t$ (11)

The Triangle Model with a Time-Varying NAIRU

- $p_t = a(L)p_{t-1} + b(L)(U_t U_t^N) + c(L) z_t + e_t$ (13)
- $U_{t}^{N} = U_{t-1}^{N} + \eta_{t}$, $E\eta_{t} = 0$, $var(\eta_{t}) = \tau^{2}$ (14)
- Differences from NKPC
 - Long lags on lagged inflation
 - Additional lags on unemployment gap
 - Explicit inclusion of supply shock variables (z_t)
- Estimated TV-NAIRU contrasted with actual U and H-P filtered U
 - Change in Stock-Watson treatment since 1997
 - How do users of the H-P filter explain the gyrations of TV-NAIRU without appealing to supply shocks?

NAIRU vs. U Rate: Estimated vs. H-P Filter

Estimated Coefficients and Simulation Performance

Variable	Lags	NKPC	Triangle
Constant		1.16 **	
Lagged Dependent Variable	$1-24^{a}$		1.01 **
	1-4	0.95 **	
Unemployment Gap	0-4		-0.56 **
Unemployment Rate	0	-0.17 *	
Relative Price of Imports	1-4		0.06 **
Food-Energy Effect	0-4		0.89 **
Productivity Trend Change	$1 \ 5$		-0.95 **
Nixon Controls "on"	0		-1.56 **
Nixon Controls "off"	0		1.78 **
R2		0.78	0.93
S.E.E		1.17	0.64
S.S.R		244.0	64.6
Dynamic Simulation			
1998:Q1 - 2007:Q4	Note b		
Mean Error		-2.75	0.29
Root Mean-Square Error		3.20	0.70

a) Lagged dependent variable is entered as the four-quarter moving average for lags 1, 5, 9, 13, 17, and 21, respectively

b) Dynamic simulations are based on regressions for the sample period 1962:Q1-1997:Q4 in which the coefficients on the lagged dependent variable are constrained to sum to unity.

Prediction through 1997, Dynamic Simulation 1998-2007

Which Differences Account for the Better Performance

- The Paper has an Appendix that exhibits 24 different versions, varying lag lengths, and present or absence of supply shock variables.
- All these differences contribute. The Roberts-NKPC model is *nested* in a version of the triangle model that has a fixed NAIRU
- Differences then become exclusion restrictions that can be tested, and all are rejected.

Fragility of Conclusion that PC Slope has become Flatter

- Consider elementary analysis of specification bias.
- Omit variable(s) positively correlated with inflation
 - Presumably negative coefficient on unemployment gap is biased toward zero because equation offers no other explanation of positive correlation of inflation with unemployment
- Thus Roberts/NKPC coefficients on U are both too low (biased toward zero) and also vary over time in response to omission of supply shock variables

U coefficient in 90-quarter Rolling Regressions starting 1963 to 1986

Final Slide of Results: Contribution of Supply Shocks

Conclusion: Identifying the Left and Right Forks and Welcoming Them Both

- Part 2 of Paper on pre-1975 starts with Phillips, Samuelson-Solow, and Fisher
- Familiar Story: destruction of policy tradeoff by Friedman-Phelps NRH
- Positive correlation of inflation and U in 1970s led to declaration that PC lay in "wreckage"

Ironically, the "Wreckage" was the New Classical Macro Itself

- Macro Information Barriers lasted only one month; couldn't explain multi-year information barriers
- Policy ineffectiveness? Empirical work showed
 - Monetary surprises had little effect on output
 - They were incapable of explaining multi-year business cycles
 - Were inconsistent with persistence of inflation

Post-1975: The Left Fork vs. the Right Fork

- The Left Fork in the Form of the "Mainstream" or "Triangle Model"
 - Broadened causes of inflation inertia beyond expectations
 - Retained long-run monetary neutrality
 - Incorporated explicit supply-shock variables
 - Allowed for a time-varying NAIRU

What the Triangle Model Explains

- The Twin Peaks of Inflation and Unemployment in the 1970s and early 1980s
- Why Inflation Led Unemployment 1973-83
- The "valley" of low inflation and low U in the late 1990s
- One major revision since 1982 publication; NAIRU must be allowed to vary over time
 - Resulting TV-NAIRU looks very different than a H-P filter over actual unemployment data
- NKPC empirical explanation nested in more comprehensive triangle approach; all exclusion restrictions are rejected

The Right Fork Models May Apply to a Broader Span of History

- Game between policymakers and policysensitive expectations essential to understand
 - Ends of hyperinflations
 - Volatile macro environments (Argentina)
 - Expectations based on events outside one's country (inflation convergence within Europe)
 - Breakdown of PC in US history Great Depression, World War I

Novelty in this Paper

- Two Forks in Road after 1975 in the reconstruction of the PC
- Each Fork is important and helps us understand how inflation behaves, albeit in different environments
- The two approaches need to pay more attention to each other
- This paper represents a start toward that longneeded reconciliation